DHSHS Math

 Student Workbook

 Student Workbook}

Unit 0 - Foundational Skill Building (FSB)

Name

Formulas - Quick Reference Guide

Order of Operations Simplifying: PEMDAS Solving: SADMEP P parenthesis or grouping E exponents MD multiplication or division (from left to right) AS addition or subtraction (from left or right)	Properties of Exponents $\begin{array}{ll} a^{n} \cdot a^{m}=a^{n+m} & \frac{a^{n}}{a^{m}}=a^{n-m} \\ \left(a^{n}\right)^{m}=a^{n \cdot m} & a^{0}=1 \\ (a b)^{n}=a^{n} \cdot b^{n} & a^{-n}=\frac{1}{a} \\ \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}} & \frac{1}{a^{-n}}=a^{n} \end{array}$
Arithmetic Properties $\begin{array}{ll} \text { Associative } & a+(b+c)=(a+b)+c \\ & a(b c)=(a b) c \\ \text { Commutative } & a+b=b+a \\ & a b=b a \\ \text { Distributive } & a(b+c)=a b+b c \end{array}$	Pythagorean Theorem $a^{2}+b^{2}=c^{2}$ In a right triangle a and b are the legs c is the hypotenuse
Slope Intercept form $f(x)=m x+b \quad m=\text { slope }, b=y-\text { intercept }$	Exponential function $f(x)=a(b)^{x} \quad a=\text { initial value } \quad b=\text { base }$
Arithmetic Operations Examples $\begin{array}{ll} a\left(\frac{b}{c}\right)=\frac{a b}{c} & \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d} \\ \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} & \frac{a b+a c}{a}=\frac{a(b+c)}{a}=b+c \\ \frac{1}{2} x=\frac{x}{2} & \frac{3}{4}(a+b)=\frac{3 a+3 b}{4} \end{array}$	Intercepts
Inverse Operations (undo each other) Addition \leftrightarrow Subtraction Multiplication \leftrightarrow Division Square Roots \leftrightarrow Squaring	Slope (Rate of Change) $\begin{array}{r} m=\frac{\text { rise } \uparrow}{r u n \rightarrow}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { given }\left(x_{1}, y_{1}\right) \\ \left(x_{2}, y_{2}\right) \end{array}$
Absolute Value $\begin{array}{ll} \|a\|=\|-a\| & \left\|\frac{a}{b}\right\|=\frac{\|a\|}{\|b\|} \\ \|a b\|=\|a\|\|b\| & \|a\| \geq 0 \\ \|a\|=a, \text { if } a \geq 0 & \|a\|=-a \text { if } a<0 \end{array}$	Radical Properties $\begin{array}{rlrl} \sqrt{x^{2}} & \pm x & \sqrt[n]{a}=a^{\frac{1}{n}} \\ \sqrt[n]{a b} & =\sqrt[n]{a} \cdot \sqrt[n]{b} \quad & \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ & \text { when } a, b \geq 0, n \text { is even } \end{array}$

\qquad
\qquad

Table of Content

Table of Content 3
Unit 0 - Notes 5
Foundational Skill Building (FSB) 5
0.1: Multiplication Table, Divisibility Rules, and Integer Rules 5
0.2: Foundational Algebra Terms 9
0.3: Order of Operations 11
0.4: Inverse Operations 14
0.5: Solving One-Step Equations Using Inverse Operations 16
0.6: Solving Multi-Step Equations Using Inverse Operations 19
0.7: Coordinate Planes \& Graphing Points 24
0.8: Properties of Addition \& Multiplication 27
0.8: Distribution 30
0.10: Factoring (GCF) \& Binomials 32
0.11: Fractions 38
0.12: Mean, Median, Mode, \& Range 43
0.13: Properties of Exponents 46
Unit 0-Practice Worksheets 51
Foundational Skill Building (FSB) 51
0.1: Practice - Multiplication, Divisibility Rules, and Integer Rules 52
0.2: Practice - Foundational Algebra Terms 54
0.3: Practice - Order of Operations 56
0.4: Practice - Inverse Operations 58
0.5: Practice - Solving One-Step Equations Using Inverse Operations 60
0.6: Practice - Solving Multi-Step Equations / Inverse Operations 62
0.7: Practice - Coordinate Planes \& Graphing Points 64
0.8: Practice - Properties of Addition \& Multiplication 66
0.9: Practice - Distribution 68
0.10: Practice - Factoring (GCF) \& Binomials 70
0.11: Practice - Fractions 72
0.12: Practice - Mean, Median, Mode, \& Range 74
0.13: Practice - Properties of Exponents 76
Appendix A: Study Guide 78
Study Habits 78
Study Strategies 78
Note Taking 79
Improving Your Memory 80
Studying for Assessments 82
Test Anxiety 82
Appendix B: Math Puzzle Challenges 85
Appendix C: Interactive Glossary 95
Appendix D: Justifications 103
\qquad
Period: \qquad

Unit 0 - Notes

Foundational Skill Building (FSB)

Page 5

0.1: Multiplication Table, Divisibility Rules, and Integer Rules

15 by 15 Multiplication Table

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
3	6	9	12	15	18	21	24	27	30	33	36	39	42	45
4	8	12	16	20	24	28	32	36	40	44	48	52	56	60
5	10	15	20	25	30	35	40	45	50	55	60	65	70	75
6	12	18	24	30	36	42	48	54	60	66	72	78	84	90
7	14	21	28	35	42	49	56	63	70	77	84	91	98	105
8	16	24	32	40	48	56	64	72	80	88	96	104	112	120
9	18	27	36	45	54	63	72	81	90	99	108	117	126	135
10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
11	22	33	44	55	66	77	88	99	110	121	132	143	154	165
12	24	36	48	60	72	84	96	108	120	132	144	156	168	180
13	26	39	52	65	78	91	104	117	130	143	156	169	182	195
14	28	42	56	70	84	98	112	126	140	154	168	182	196	210
15	30	45	60	75	90	105	120	135	150	165	180	195	210	225

Name: \qquad
\qquad

Divisibility Rules

"divisible" means a number is able to be divided evenly with another number with NO remainders!

A number is divisible by...	Definition	Example
2	The last digit is an even number.	$2,458$ 8 is divisible by 2
3	The sum of the digits is divisible by 3.	$\begin{gathered} 123 \\ 1+2+3=6 \end{gathered}$ 6 is divisible by 3
4	The last two digit form a number that is divisible by 4 .	$4,524$ 24 is divisible by 4
5	The last digit is either a 5 or a 0 (zero).	12,390 or 3,475 both 0 and 5 are divisible by 5
6	The number is divisible by BOTH 2 and 3.	24 24 is divisible by BOTH 2 and 3
7	You can double the last digit and subtract the sum from the rest of the number, and set an answer that is divisible by 7 .	$\begin{gathered} 672 \\ 2+2=4 \\ 67-4=63 \end{gathered}$ 63 is divisible by 7
8	The last three digits from the a number that is divisible by 8.	$1,816$ 816 is divisible by 8
9	The sum of all the digits is divisible by 9.	$\begin{gathered} 153 \\ 1+5+3=9 \end{gathered}$ 9 is divisible by 9
10	The number ends in a 0 (zero).	$\begin{gathered} 257,890 \\ 0 \text { (zero) is divisible by } \\ 10 \end{gathered}$

Integer Rules

Addition

Same sign, keep the sign

$$
\begin{array}{llll}
+ & \text { and } & + & + \\
- & \text { and } & = & -
\end{array}
$$

Opposite signs, keep the sign of the bigger |number|

$$
+ \text { and }-=+ \text { or }-
$$

Subtraction
Same thing as adding with a negative number Ex: $8-5=8+(-5)$

Multiplication / Division
Same sign = +
Opposite signs $=-$

Two Signs Together, Side by Side

- Multiply, Simplify, Reclassify

$3+-7$	Rule: $+\bullet-=-$		
$3-7$	Simplified, Diff Signs	$6-(+9)$	Rule: $-\bullet+=-$ Simplified, Diff Signs
$3--7$	Rule: $-\bullet-=+$	$6-(-9)$	Rule: $-\bullet-=+$ $3+7$
Simplified, Same Signs	$6+9$	Simplified, Same Signs	

"When Adding, Opposites AłKract"

Name: \qquad
Period: \qquad

0.2: Foundational Algebra Terms

Essential Question: How can I identify a term in an expression?	
Questions \& Cues	Key Terms V ariable \equiv a symbol or letter that represents a quantity that varies in an expression or equation. It has no fixed value. Ex. $y=3 x-4 \quad$ Both x and y are variables Coefficient \equiv a number multiplied by a variable. Constant \equiv a number that has a fixed numerical value. Ex. 2, 6, 0, -5, -9, 3/8, 4/9 are all constants In the expression $3 x+5$, the constant is 5 . Terms \equiv are separated by a plus or a minus sign. Terms are single numbers, variables, or the product of a number and variable. Like Terms \equiv same variable and same exponent. Expression \equiv a mathematical sentence that contains one or more terms. Equation \equiv a mathematical sentence that equates one expression to another. It has an equal sign. Inequality \equiv a mathematical sentence that compares one expression to another. It has a symbol that shows less than ($<, \leq$) or greater than ($>, \geq$). The bar means "or equal to."

Questions \& Cues	Guided Practice In the following expressions identify the key parts. 1) $12 x-7$ What are the terms? \qquad Variable(s) $=$ \qquad Coefficient $=$ \qquad Constant $=$ \qquad 2) $\frac{3}{5} x+27 y-14 \quad$ What are the terms? \qquad Variable(s) $=$ \qquad Coefficient $=$ \qquad Constant $=$ \qquad 3) Circle or highlight the expressions in the following examples. $9+24 z$ $32=\frac{1}{2}-3 x+2 x^{2}$ $4 y+7=8 x-3$ 4) Underline the equations in the examples above.
Summary I can identify a term in an expression by	

\qquad
\qquad

0.3: Order of Operations

Exponents
(3)

(4)

SADMEP: to Solve

Essential Question: How can I simplify an expression?	
Questions \& Cues	Key Terms Simplify \equiv to rewrite an expression in its simplest form. $P E M D A S \equiv$ an acronym to help remember the order of operations used to SIMPLIFY expressions. It stands for Parenthesis (or grouping), Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). To remember this we say, "Please Excuse My Dear Aunt Sally (from leaving the room)" or "Purple Elephants Marching Down A Street". $S A D M E P \equiv$ an acronym to help remember the order of operations to SOLVE equations. It is PEMDAS backwards, so you will work in reverse order.
	Examples of Simplifying 1) $3+7 \cdot 2$ PEMEAS Multiply $3+14$ PEMDAS Addition 17 2) $8-4^{2}$ PEAMDAS Exponents 8-16 PEMDAS Subtraction -8 3) $8 \div\left(6-2^{2}\right)$ PEMDAS Parenthesis (Exponents) $8 \div(6-4)$ PEMDAS Parenthesis (Subtraction) $8 \div 2$ PEADAS Division 4

Name: \qquad
\qquad

Questions \& Cues	4) $8 \div 2(3+1)$ $8 \div 2$ (4) 4 (4) 16 PEMDAS Parenthesis (Add) PEMDAS (Left to Right), Divide PEMDAS Multiply Examples of Solving In unit 0.5 and 0.6 solving is explained in depth. See Unit 0.5 and 0.6. Guided Practice 1) $5+1 \cdot 3=$ \qquad 2) $12 \div\left(20-4^{2}\right)=$ \qquad 3) $12 \div 3(4+2)=$ \qquad
Summary	

0.4: Inverse Operations

Name: \qquad
Period: \qquad
Period:

Questions \& Cues	Examples 1) $1+2=3 \quad 3-2=1$ Adding 2 to 1 equals 3 , but if you then subtract 2 from 3 you get your original number, 1. 2) $2 \cdot 3=6 \quad 6 \div 3=2$ Multiplying 2 by 3 equals 6 , but if you then divide 6 by 3 you get your original number, 2. 3) $3^{2}=9 \sqrt{9}=3$ Squaring 3 equals 9, but if you take the square root of 9 you get your original number, 3 .
Summary I can identify inverse operations by	

0.5: Solving One-Step Equations Using Inverse Operations

Essential Question: How can I solve simple one-step equations?	
Questions \& Cues	Key Terms Isolate \equiv rearranging an algebraic equation so that a specific variable is alone on one side of an equation. Solve \equiv to find the value of a variable that makes an equation true. Ex. solve $3+x=5$ solution is $x=2$ since $3+2=5$ One Step Equation \equiv an equation that can be solved in only one step. Recall
	Example To solve one-step equations you will use inverse operations. This will prepare you for more difficult problems (multi-step equations) GOAL: isolate the variable. Steps 1) Identify the variable to isolate and the operation being applied to it. $\text { ex. } x+4=6$ the variable is " x " and the operation is addition (+4) 2) Perform the inverse operation on both sides of the equation. $\text { ex. } x+4-4=6-4, \quad \text { subtract } 4 \text { from both sides. }$ 3) Simplify both sides. ex. $x=2$

\qquad
Period: \qquad

Questions \& Cues	Examples Solve the following equations completely. 1) $x-7=8 \quad$ Isolate x, current operation is subtraction $x-7+7=8+7$ Apply the inverse operation, addition $x=15$ Simplify 2) $\begin{array}{ll} 3 y=-9 & \text { Isolate } y, \text { current operation is multiplication } \\ \frac{3 y}{3}=\frac{-9}{3} & \text { Apply the inverse operation, division } \\ y=-3 & \text { Simplify } \end{array}$ 3) $\frac{r}{3}=15 \quad$ Isolate r, current operation is division $\frac{r}{3} \cdot 3=15 \cdot 3$ Apply the inverse operation, multipl. $r=45 \quad$ Simplify 4) $\begin{aligned} & x^{2}=36 \\ & \sqrt{x^{2}}=\sqrt{36} \\ & x= \pm 6 \end{aligned}$ Isolate x, current operation is squaring Apply the inverse operation, square root Simplify * Note there are two possible solutions. $x=6 \text { and } x=-6$ Guided Practice 1) $b+7=8$ Isolate \qquad , current operation is \qquad Apply the inverse operation, \qquad Simplify 2) $5 m=35$ Isolate \qquad , current operation is \qquad Apply the inverse operation, \qquad Simplify

Questions \& Cues	3) $\frac{1}{3} y=-2$ \qquad \qquad 4) $x^{2}=64$ \qquad \qquad	Isolate \qquad current operation is \qquad Apply the inverse operation, \qquad Simplify Isolate \qquad , current operation is \qquad Apply the inverse operation, \qquad Simplify
Summary I can solve simple one-step equations by		

Name: \qquad
Period: \qquad

0.6: Solving Multi-Step Equations Using Inverse Operations

$\left.\left.\begin{array}{|l|l|}\hline \text { Essential Question: How can I solve a multi-step equation? } \\ \hline \text { Questions \& Cues } & \begin{array}{l}\text { Key Terms } \\ \text { Solving 三 to find the value of the unknown in an equation. } \\ \text { SADMEP 三 reverse order of operations (PEMDAS). It is referenced } \\ \text { when solving an equation. }\end{array} \\ \hline & \begin{array}{l}\text { Steps to Solving an Equation with the Variable on One Side } \\ \text { PEMDAS is only a tool used to help you remember the order in which } \\ \text { to simplify an expression. When you want to solve an equation you } \\ \text { need to go in the reverse order of PEMDAS which is SADMEP, but } \\ \text { before you can solve it you must make sure the expressions on each } \\ \text { side of the equation are simplified first. }\end{array} \\ \text { 1) Simplify the expressions on each side of the equations. } \\ \text { 2) SA: use the inverse of addition or subtraction to eliminate the } \\ \text { term being subtracted or added. } \\ \text { 3) DM: use the inverse of multiplication or division to eliminate } \\ \text { the term being divided or multiplied. }\end{array}\right\} \begin{array}{l}\text { 4) E: use the square root which is the inverse of any square. } \\ \text { 5) P: Repeat these steps for anything within the parentheses. }\end{array}\right\}$

\qquad
Period: \qquad
\qquad

Questions \& Cues	2) $\frac{3 x}{4}=9$ SA DMEP \qquad \qquad \qquad \qquad 3) $\frac{3(x-2)}{7}=4$ \qquad \qquad \qquad \qquad \qquad \qquad Nothing to simplify Use \qquad Use \qquad SA DM E P Simplify Use \qquad Use \qquad Use \qquad
	Steps to Solving an Equation with Variables on Both Sides This is similar to the above steps, but before you can solve you must move the variable to only one side using inverse operations. 1) Simplify the expressions on each side of the equation. 2) Choose which side of the equation you would like to isolate the variable (Left or Right), and then use the inverse operation to move the term with the variable to your chosen side. 3) Now that the variable is on one side, solve using inverse operations (as shown above).

Name: \qquad
Period: \qquad

0.7: Coordinate Planes \& Graphing Points

Essential Question: How can I plot points on a coordinate plane?	
Questions \& Cues	Key Terms Coordinate Plane \equiv a two-dimensional plane formed by the perpendicular intersection of an x - and a y-axis. Usually represented on a grid. Example:Coordinate Plane Quadrants \equiv the four sections on a coordinate plane created by the intersection of the x - and y-axes. The x and y values change signs depending on the quadrant the coordinate is in. Quadrant II (-,+) Quadrant I (+,+) Quadrant III (-,-) Quadrant IV (+,-) Graph \equiv a diagram showing the relationship between variable quantities. Example: A graph drawn onto a coordinate plane. $x-a x i s \equiv \text { the horizontal reference line. }$ y-axis \equiv the vertical reference line.

Name: \qquad
Period: \qquad

Questions \& Cues	Origin \equiv the point of intersection of the x - and y-axes, located at $(0,0)$. Ordered Pair \equiv the coordinate of a point, (x, y), on a coordinate plane. Notice that these letters are in alphabetical order. - The first number corresponds to the x-coordinate and represents the number of units to move in a horizontal position (right or left) starting from the origin $(0,0)$. - The second number corresponds to the y-coordinate and represents the number of units to move in a vertical position (up or down) starting from the origin $(0,0)$.
	Plotting (Graphing) Points To plot point (x, y) on the coordinate plane follow these steps: 1 - Start at the origin $(0,0)$, in the center of the coordinate plane. 2 - Move x units right (+) or left (-). 3 - Starting from your x position, move y units up (+) or down (-). 4 - Mark the point with a dot and label. The point on the coordinate plane is the ordered pair Assume each square is 1 unit.

Name: \qquad
Period: \qquad

0.8: Properties of Addition \& Multiplication

Essential Question: How can I make addition or multiplication simpler?	
Questions \& Cues	Key Terms Commute \equiv to move around or travel. Commutative Property of Addition \equiv to change the order of the terms being added. It does not change the sum. $a+b=b+a$ Commutative Property of Multiplication \equiv to change the order of the terms being multiplied. It does not change the product. $a b=b a$ Associate \equiv to group Associative Property of Addition \equiv when three or more terms are added, the sum is the same regardless of how the terms are grouped. $a+(b+c)=a+(b+c)$ Associative Property of Multiplication \equiv when three or more terms are multiplied, the product is the same regardless of how the terms are grouped. $a(b c)=(a b) c$
	Examples Commutative Property 1) $\begin{aligned} & 2+3=3+2 \\ & 5=5 \end{aligned}$ 2) $\begin{aligned} & 5+6+5=5+5+6 \\ & 11+5=10+6 \\ & 16=16 \end{aligned}$ 3) $\begin{aligned} & 3 \cdot 4=4 \cdot 3 \\ & 12=12 \end{aligned}$

Questions \& Cues	4) $2 \cdot 7 \cdot 5=2 \cdot 5 \cdot 7$ $14 \cdot 5=10 \cdot 7$ $70=70$ Guided Practice Commutative Property 1) $4+7=$ \qquad \qquad $=$ \qquad 2) $3 \cdot 8=$ \qquad \qquad $=$ \qquad 3) $6+19+4=$ \qquad \qquad $=$ \qquad \qquad $=$ \qquad 4) $4 \cdot 7 \cdot 5=$ \qquad \qquad $=$ \qquad \qquad $=$ \qquad Examples Associative Property 1) $\begin{aligned} & 12+29+8=12+8+29 \\ & 41+8=20+29 \\ & 49=49 \end{aligned}$ 2) $\begin{aligned} & 2+34+18=2+18+34 \\ & 36+18=20+34 \\ & 54=54 \end{aligned}$

Name: \qquad
Period: \qquad

Questions \& Cues	Guided Practice Associative Property

1) $3+14+7=$ \qquad
\qquad $=$ \qquad
\qquad
\qquad
2) $19+42+1=$ \qquad
\qquad
\qquad
\qquad
\qquad
3) $4 \cdot 12 \cdot 5=$ \qquad
\qquad
\qquad
\qquad
4) $3 \cdot 5 \cdot 5=$ \qquad $\longrightarrow=$ \qquad
\qquad
Sumber

Summary
I can make addition or multiplication simpler by \qquad
\qquad
\qquad

0.9: Distribution

Essential Question: How can I use the distributive property to factor an expression?	
Questions \& Cues	Key Terms Distribution \equiv multiplying a sum by its factor. This means multiplying each term (addend) separately within the sum by its factor. Distributive Property \equiv multiplying a number by a sum is equivalent to multiplying each term in the sum separately. $a(b+c)=a b+a c$
	Numeric Example In the expression below, you have been taught to use the order of operations (PEMDAS). You combine the expression inside the parentheses first, then multiply. $\begin{gathered} 3(4+7) \\ 3(4+7)=3(11)=33 \end{gathered}$ Another way is to use the distributive property. Simplify this expression by first distributing (multiplying) the ' 3 ' into each term, then combining like terms. $3(4+7)=3 \cdot 4+3 \cdot 7=12+21=33$ Guided Practice Use the distributive property to simplify the following expression. 1) $4(3+8)=$ \qquad - \qquad $+$ \qquad - \qquad $=$ \qquad $+$ \qquad $=$ \qquad 2) $5(6+10)=$ \qquad . \qquad $+$ \qquad . \qquad $=$ \qquad $+$ \qquad $=$ \qquad 3) $9(7-3)=$ \qquad . \qquad $+$ \qquad \qquad $=$ \qquad - \qquad $=$ \qquad So why do it differently when simplifying inside the parenthesis seems so much simpler? It is to prepare you for algebraic distribution when we use variables instead of numbers.

Name: \qquad
Period: \qquad
\qquad

Questions \& Cues	Algebraic Example The expression below is in distributive property format. You cannot add the expression in the parenthesis first because the terms are not like terms. You must distribute the factor (number or expression outside the parentheses). $3(4 x+7)$ Again, you must distribute the ' 3 ' into each term inside the parenthesis. $3(4 x+7)=3 \cdot 4 x+3 \cdot 7=12 x+21$ Since $12 x$ and 21 are not like terms, this is the final simplified expression. Guided Practice Use the distributive property to simplify the following expressions. 1) $x(3+8)=$ \qquad .___+ \qquad ___ $=$ \qquad $+$ \qquad $=$ \qquad 2) $9(7 x-3)=$ \qquad -___+ $+$ \qquad \qquad $-$ \qquad 3) $3 x(7+4)=$ \qquad .__+ \qquad . \qquad $+$ \qquad $=$ \qquad
Summary I can use the distrib	tive property to factor an expression by

0.10: Factoring (GCF) \& Binomials

Essential Question: How can I factor a binomial?	
Questions \& Cues	Key Terms Factor \equiv one part of a product. It is a number, variable, or expression you multiply to get a product. $3 \cdot 4=12 \quad 3$ is a factor of 12 4 is a factor of 12 12 is the product of multiplying the factors Greatest Common Factor $(G C F) \equiv$ the largest number or expression that can be evenly divided out of two or more terms. $9 x+12 \quad 3 \text { is a factor of } 9 \mathrm{x} \text {; multiplying } 3 \text { and } 3 \mathrm{x} \text { equals } 9 \mathrm{x}$ 3 is a factor of 12 ; multiplying 3 and 4 equals 12 3 is the largest factor of both $9 x$ and 12 therefore, 3 is the Greatest Common Factor (GCF) Factoring \equiv the act of writing a term (a product) as two or more factors. $\begin{array}{ll} 18=3 \cdot 6 & \text { or } \\ 18=2 \cdot 9 & 18 \text { is factored in both of these examples. } \end{array}$ Prime Factorization \equiv factoring a number until all factors are prime numbers. $12=2 \cdot 2 \cdot 3 \quad 2$ and 3 are the prime factors of 12. $12=2^{2} \cdot 3 \quad$ is another way to write the simplified expression.

\qquad
Period: \qquad

Questions \& Cues	Greatest Common Factor Examples Find the greatest common factor of the following numbers and expressions. 1) 12 and 39 Step 1) Find the prime factors of each. Step 2) Circle each common factor every time that factor appears in both terms. Circle two 2's and one 3. Step 3) Multiply the common factors together. $2 \cdot 2 \cdot 3=12$ so, 12 is the GCF 2) 20 and $8 x$ Step 1) Find the prime factors of each.

\qquad
Period: \qquad
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Questions \& Cues } & \begin{array}{l}\text { Step 2) Circle each common factor every time that factor } \\
\text { appears in both. } \\
\text { Circle two 2's }\end{array}
$$

Step 3) Multiply the common factors together.

2 \cdot 2=4 \quad so, 4 is the GCF\end{array}\right\}\)| Guided Practice |
| :--- |
| Find the greatest common factor of the following numbers and |
| expressions. |
| 1) 6 and 15 |

Questions \& Cues	Examples 1) Factor the following binomial completely. $4 x+6$ 1. Factor each term to find the GCF. $\begin{aligned} & 4 x=2 \cdot 2 \cdot x=2(2 x) \\ & 6=2 \cdot 3=2(3) \end{aligned}$ GCF is 2 2. Rewrite the expression as a sum of the factored terms. $2(2 x)+2(3)$ 3. Put the GCF in front of the expression and put the remaining sum in parenthesis. $2(2 x+3)$ 2) Factor the following binomial completely. $30 x+42$ 1. Factor each term to find the GCF. $\begin{aligned} & 30 x=2 \cdot 3 \cdot 5 \cdot x=6(5 x) \\ & 42=2 \cdot 3 \cdot 7=6(7) \end{aligned}$ GCF is $2 \cdot 3=6$ 2. Rewrite the expression as a sum of the factored terms. $6(5 x)+6(7)$ 3. Put the GCF in front of the expression and put the remaining sum in parenthesis. $6(5 x+7)$

Name: \qquad
Period: \qquad

0.11: Fractions

Essential Question: How can I add two fractions with uncommon denominators?	
Questions \& Cues	Key Terms Fraction \equiv number of equal parts of a whole. It represents division. Examples: - $\frac{1}{4}$ represents 1 part of 4 equal parts. - $\frac{3}{4}$ represents 3 parts of 4 equal parts. - $\frac{4}{4}$ represents 4 parts of 4 equal parts to yield 1 whole. Numerator \equiv the top number of a fraction. It represents the number of equal parts. Denominator \equiv the divisor. It is the bottom number of a fraction. It represents the number of equal parts needed to make a whole. Common Denominator \equiv when two or more fractions have the same denominator. Least Common Denominator \equiv when two or more fractions have the least common multiple of all the denominators. Reduce \equiv rewriting a fraction in its simplest form. Always reduce!

Name: \qquad
Period: \qquad

Questions \& Cues	Finding a Common Denominator To find the common denominator you can do one of 2 things: 1) Find the least common multiple of all the denominators. 2) Multiply the denominators together. The second method is easiest to learn and will be used in these notes. Steps to Adding and Subtracting Fractions 1) Find a common denominator. 2) Convert the fractions into equivalent forms to make the denominators the same. 3) Add or subtract the numerators and keep the denominator. 4) Reduce the fraction if possible. Examples 1) $\begin{array}{ll} \frac{1}{2}+\frac{1}{4} & \\ 2 \cdot 4=8 & \text { Find a common denominator } \\ \frac{1}{2} \cdot \frac{4}{4}+\frac{1}{4} \cdot \frac{2}{2}=\frac{4}{8}+\frac{2}{8} & \text { Convert into equivalent forms } \\ \frac{4+2}{8}=\frac{6}{8} & \text { Add the numerators } \\ \frac{6}{8}=\frac{2 \cdot 3}{2 \cdot 4}=\frac{3}{4} & \text { Reduce the fraction } \end{array}$ 2) $\frac{10}{15}-\frac{3}{10}$ $15 \cdot 10=150$ Find a common denominator $\frac{10}{15} \cdot \frac{10}{10}-\frac{3}{10} \cdot \frac{15}{15}=\frac{100}{150}-\frac{45}{150}$ Convert into equivalent forms $\frac{45-100}{150}=\frac{55}{150}$ $\frac{55}{150}=\frac{5 \cdot 11}{5 \cdot 30}=\frac{11}{30}$ Subtract the numerators $\frac{55}{150}=\frac{5 \cdot 11}{5 \cdot 30}=\frac{11}{30} \quad$ Reduce the fraction

Questions \& Cues	Guided Practice 1) $\frac{2}{3}+\frac{4}{5}$ \qquad Find the common denominator \qquad Convert into equivalent forms \qquad Add or Subtract the numerators \qquad Reduce the fraction if possible 2) $\frac{7}{9}-\frac{2}{4}$ \qquad Find the common denominator \qquad Convert into equivalent forms \qquad Add or Subtract the numerators \qquad Reduce the fraction if possible Steps to Multiplying Fractions 1) Multiply numerators (straight across) 2) Multiply denominators (straight across) 3) Reduce if possible Examples 1) $\frac{1}{2} \cdot \frac{1}{4}$ 2) $\frac{2}{3} \cdot \frac{5}{4}$

Name: \qquad
Period: \qquad

Name: \qquad
Period: \qquad

0.12: Mean, Median, Mode, \& Range

Questions \& Cues	Mode \equiv is the number that occurs the most often in a data set. - Ex. Data Set: 2, 5, 9, 3, 5, 5, 4, 2, 7 Mode: 5 - It is not uncommon for a data set to have more than one mode. This happens when two or more elements occur with equal frequency in the data set. - A data set with two modes is called bimodal. Ex. Data Set: 2, 5, 2, 3, 5, 4, 7 Modes: 2 and 5 - A data set with three modes is called trimodal. Ex. Data Set: 2, 5, 2, 7, 5, 4, 7 Modes: 2, 5, and 7 - A data set with more than three modes is considered not to have a mode. Range of a Data Set \equiv is the difference between the largest value and smallest value contained in the data set. - To find the range, reorder the data set from smallest to largest. Then, subtract the first element from the last. - Ex. Data Set: 2, 5, 9, 3, 5, 4, 7 Reordered: $\underline{2}, 3,4,5,5,7, \underline{9}$ Range: 9-2 = 7

Name: \qquad
Period: \qquad

Questions \& Cues	Guided Practice 1) Find the mean, median, mode, and range of the following data set: $\{3,7,5,8,8\}$ a) Mean: \qquad c) Mode: \qquad b) Median: \qquad d) Range: \qquad 2) Find the mean, median, mode, and range of the following data set: $\{2,4,7,7,10,10\}$ a) Mean: \qquad c) Mode: \qquad b) Median: \qquad d) Range: \qquad
Summary The difference between the mean and the median is	

0.13: Properties of Exponents

Essential Question: How can I simplify an exponential expression?	
Questions \& Cues	Key Terms Exponent \equiv A number, x, that a base is raised to. The base is multiplied by itself x number of times. Base (of a Power) \equiv The number or variable being multiplied. Power \equiv a base with an exponent. Expanded Form of a Power A power written in expanded form is when the base of the power is written as repeated multiplication. The exponent of the power indicates the number of times the base is multiplied by itself. Properties of Exponents Product Rule : When multiplying powers with the same base (b), add the exponents. $b^{x} \cdot b^{y}=b^{x+y}$ Example: $4^{2} \cdot 4^{3}=4^{2+3}=4^{5}$ Expanded form: $4^{2} \cdot 4^{3}=(4 \cdot 4) \cdot(4 \cdot 4 \cdot 4)=4^{5}$

\qquad
Period: \qquad

Questions \& Cues	Quotient Rule : When dividing powers with the same base (b), subtract the exponents. $\frac{b^{x}}{b^{y}}=b^{x-y}$ Example: $\quad \frac{4^{5}}{4^{2}}=4^{5-2}=4^{3}$ Expanded form: $\frac{4^{5}}{4^{2}}=\frac{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{4 \cdot 4}=\frac{4 \cdot 4 \cdot 4}{1}=4^{3}$ Power Rule: When raising a power to a power, multiply the exponents. $\left(b^{x}\right)^{y}=b^{x y}$ Example: $\left(4^{2}\right)^{3}=4^{2 \cdot 3}=4^{6}$ Expanded form: $\left(4^{2}\right)^{3}=\left(4^{2}\right)\left(4^{2}\right)\left(4^{2}\right)=(4 \cdot 4)(4 \cdot 4)(4 \cdot 4)=4^{6}$ Zero Exponent Rule : When the exponent of a power is zero, the expression will simplify to 1 (base $\neq 0$). $b^{0}=1$ Examples: $\quad 4^{0}=1$ $(3 x y)^{0}=1$ Explanation: $\frac{b^{x}}{b^{x}}=b^{x-x}=b^{0}=1$ Negative Exponent Rule: When a base is raised to a negative exponent, the expression can be rewritten as the reciprocal fraction with a positive exponent (base $b \neq 0$). $b^{-x}=\frac{b^{-x}}{1}=\frac{1}{b^{x}}$ Example: $4^{-3}=\frac{4^{-3}}{1}=\frac{1}{4^{3}}$

Questions \& Cues	Guided Practice Simplify the following expressions. 1st by using expansion, then the exponent rule. 1) $3^{3} \cdot 3^{5}$ Expansion: \qquad \qquad Rule: $3^{3} \cdot 3^{5}=3^{3+5}=3^{8}$ 2) $x^{4} \cdot x^{6}$ Expansion: \qquad \qquad Rule: \qquad 3) $(2 x)^{2} \cdot(2 x)^{4}$ Expansion: \qquad \qquad Rule: \qquad 4) $\frac{3^{3}}{3^{5}}$ Expansion: \qquad \qquad Rule: \qquad 5) $\frac{(3 x)^{5}}{(3 x)^{2}}$ Expansion: \qquad \qquad Rule: \qquad

\qquad
Period: \qquad

\qquad
\qquad

Unit 0-Practice Worksheets

Foundational Skill Building (FSB)

0.1: Practice - Multiplication, Divisibility Rules, and Integer Rules

Key Terms Divisibility refers to a number's quality of being evenly \qquad by another \qquad without a remainder left over.	Divisibility: To determine if a number is divisible by 3 you must \qquad all of the digits of that number. Repeat until you get a \qquad digit. If that digit is equal to \qquad ,__or or \qquad then it is divisible by \qquad Practice In the table below put an x in the box if the number is divisible by that stated in the row.							
another \qquad without a remainder left over.		72	96	240	45	81	49	132
	Divisible by 2							
	Divisible by 3							
	Divisible by 5							
	Divisible by 6							
	Divisible by 9							
	Divisible by 10							
		54	67	492	525	111	912	105
	Divisible by 2							
	Divisible by 3							
	Divisible by 5							
	Divisible by 6							
	Divisible by 9							

Name: \qquad
Period: \qquad

0.2: Practice - Foundational Algebra Terms

Name: \qquad
\qquad

Practice (continued)

5) Circle the expression in the following examples:
$4 x+9 z$
$(21-13) b=4 y+56$
$33+7=x$
$85 \div 27=\frac{6-\sqrt{2 x}}{43 \div 9}$
6) Circle the equations in the following examples:
$4 x+9 z$
$(21-13) b=4 y+56$
$33+7 x$
$85 \div 27=\frac{6-\sqrt{2 x}}{43 \div 9}$
$\sqrt{97}+1=51 x-\frac{1}{3} \quad 2+3=5$
$3 \beta-5 \pi$
$17 x=0$
7) In your own words, explain the difference between an expression and an equation. An expression is \qquad
\qquad
An equation is \qquad
\qquad

0.3: Practice - Order of Operations

Name: \qquad
Period: \qquad

Practice
7) $(-9)-(-8)+2 \cdot 4^{2}$ \qquad
14) $10 \cdot 5-(-6)^{2}+(-8)$ \qquad
8) $(-3)^{2}-2+8 \div(-8)$ \qquad 15) $(-5)^{2} \cdot 3 \div 5+9$ \qquad
9) $8 \div(-4) \cdot(-6)^{2}+7$ \qquad 16) $(10 \div(-5)-(-2)) \cdot(-3)^{2}$ \qquad
10) $4(-8)+6-(-2)^{3}$ \qquad 17) $\cdot(-6) \div 8+3^{2}$ \qquad
11) $2^{3} \cdot 10-3+(-2)$ \qquad 18) $\left(5^{2}-6+(-5)\right) \cdot 2$ \qquad
12) $(-5) \cdot\left(7-4 \cdot 2^{3}\right)$
19) $9 \cdot(-10)-(-3)^{3}+10$ \qquad
13) $10+6 \cdot 2-(-3)^{3}$ \qquad 20) $-7 \cdot 9 \div\left(-5-(-2)^{2}\right)$ \qquad

0.4: Practice - Inverse Operations

Name: \qquad
Period: \qquad

This page intentionally left blank

0.5: Practice - Solving One-Step Equations Using Inverse Operations

Name: \qquad
\qquad

Key Concept
Use inverse \qquad to solve for the \qquad .

- The inverse of Addition is \qquad
- The inverse of division is \qquad
- The inverse of a square root is \qquad

Practice

Solve the following equations. Show your work.
10) $x+4=32$
11) $5 x=45$
12) $\frac{1}{6} y=4$
13) $\frac{1}{4} x=12$
14) $x=\sqrt{16 r^{2}}$
15) $7 m=49$
16) $w+12=25$
17) $x=\sqrt{(4 x)^{2}}$
18) $\frac{1}{8} w=5$
19) $x=\sqrt{36}$
20) $9 y=54$
21) $y-2=18$
22) $-42+x=-19$
23) $9=x+7$
24) $x^{2}=25$

0.6: Practice - Solving Multi-Step Equations / Inverse Operations

Name: \qquad
Period: \qquad
\qquad

Practice
7) $3(-6+3 y)=18$
8) $6 x+7=13+7 x$
9) $-7 w-3 w+2=-8 w-8$
10) $-14+6 y+7-2 y=1+5 y$
14) $30=-5(6 w+3)$
15) $13-4 x=1-x$
16) $-8-r=r-4 r$
17) $x+2=-14-n$
11) $14-4 x=x-3 x$
18) $7 y-3=3+6 y$
12) $5+2 d=2 d+6$
19) $-10+d+4-5=7 d-5$
13) $-8 x+4(1+5 x)=-6 x-14$
20) $-6 x-20=-2 x+4(1-3 x)$

0.7: Practice - Coordinate Planes \& Graphing Points

Key Terms x-axis is the \qquad reference line. y-axis is the \qquad reference line. Ordered Pair - an \qquad and a \qquad value written in order as (\qquad , \qquad). Origin - where the x and y axes \qquad , at \qquad \qquad).	Key Concept Identify the parts of the coordinate plane. 2) Label the x and y axes. 3) Label the origin 4) Label the 4 quadrants with I, II, III \& IV Practice Write the corresponding point of the ordered pairs below. 1) $(-6,0)$ \qquad 2) $(-7,4)$ \qquad 3) $(7,1)$ \qquad 4) $(2,2)$ \qquad 5) $(-1,9)$ \qquad 6) $(1,4)$ \qquad Write the ordered pair for each given point. 7) G \qquad 8) A \qquad 9) N \qquad 10) M \qquad 11) X \qquad 12) V \qquad Plot the following points on the coordinate plane above. 13) $\mathrm{H}(4,-6)$ 14) $Q(0,8)$ 15) $B(4,5)$ 16) $C(1,-2)$ 17) $K(-9,0)$ 18) $R(9,7)$

\qquad
Period: \qquad

0.8: Practice - Properties of Addition \& Multiplication

\qquad
Period: \qquad

Practice

Use the Associative properties to simplify the following expression.
6) $3+38+17=$ \qquad
$\longrightarrow=$ \qquad
\qquad
7) $12+73+18=$ \qquad
\qquad
\qquad
\qquad
\qquad
8) $4 \cdot 12 \cdot 5=$ \qquad
\qquad
\qquad
\qquad $=$ \qquad
9) $3 \cdot 3 \cdot 4 \cdot 4=$ \qquad
\qquad
10) $3 \cdot 5 \cdot 5=$ \qquad
\qquad
\qquad
\qquad
11) $5+16+25=$ \qquad
\qquad = \qquad
\qquad
12) $6 \cdot 2 \cdot 6=$ \qquad
\qquad $=$ \qquad
\qquad $=$ \qquad

0.9: Practice - Distribution

Name: \qquad
Period: \qquad

Key Concept
Be sure you multiply the outside factor to \qquad the terms inside the
\qquad .

Practice

Use the distributive property to simplify the following expression.
7) $x(10-2 y)=$
8) $3 x(100-p)=$
9) $4(3 x+10 y)=$
10) $8 x(5 m+3 b)=$
11) $-7(-3-3 x)=$
12) $-(10 x-1)=$
13) $\frac{1}{2}(16+98 x)=$
14) $\frac{1}{3}(6+x)=$
15) $\frac{1}{5}(10 x-2)=$

0.10: Practice - Factoring (GCF) \& Binomials

Key Terms	Key Concept
Factor is one part of a \qquad , and is	Greatest Common Factor is the \qquad number or \qquad that can be evenly
a	___ out of two or more terms.
variable or expression you	Steps for prime factorization
\ldots to get	1. Find the ____ of each term.
the product.	2. Circle each ___ each time
	it appears in both numbers.
The largest number that can divide evenly into two or more other numbers is called the \qquad	3.
	Practice
	Find the greatest common factor of the following numbers and expressions.
	1) 15 and 36
Prime Factorization - factoring a number until all factors are \qquad	2) 35 and 21
	3) 72 and 48
	4) 24 and 96
	5) 27 and 81

Name: \qquad
Period: \qquad

Steps to Factoring Binomials

To factor a binomial...

1. Find the \qquad
\qquad
\qquad of each

term in the \qquad .
2. Rewrite the expression as a \qquad of the factored terms.
3. Put the \qquad in front of the expression and put the remaining \qquad in parenthesis.

Note: This is like doing distribution in reverse order.

Practice

Factor the following binomials completely.
6) $4 x+22=$ \qquad
7) $24 y-45=$ \qquad
8) $20 b-30 b=$ \qquad
9) $69 w+48=$ \qquad
10) $72 m+36=$ \qquad

0.11: Practice - Fractions

Key Terms	Key Concept
A fraction is another way to write \qquad	In order to add or subtract fractions it is necessary to have a \qquad \qquad .
The total number of	Practice
parts is	Simplify the following expressions completely.
represented by the	1) $\frac{1}{3}+\frac{4}{5}$
The number of equal parts is represented by the	2) $\frac{1}{2}-\frac{2}{4}$
	3) $\frac{2}{5}+\frac{1}{4}$
	4) $\frac{1}{5}+\frac{2}{3}$
	5) $\frac{2}{10}-\frac{2}{4}$
	6) $\frac{3}{4}+\frac{1}{2}+\frac{1}{3}$

Name: \qquad
Period: \qquad

Key Terms	Key Concept	
To reduce a fraction means to rewrite it in its \qquad form.	The simplest way to reduce a fraction is to \qquad the numerator and denominator before \qquad , simplify, and then \qquad anything remaining.	荤

Simplify the following expressions completely.
7) $\frac{1}{3} \cdot \frac{4}{5}$
8) $\frac{1}{2} \cdot \frac{2}{4}$
9) $\frac{2}{5} \cdot \frac{1}{4}$
10) $\frac{3}{10} \cdot \frac{1}{5}$
11) $\frac{1}{5} \cdot \frac{2}{3}$
12) $\frac{3}{8} \cdot \frac{32}{6}$
13) $\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{1}{3}$
14) $\frac{1}{2} \cdot \frac{12}{5}$
15) $\frac{24}{5} \cdot \frac{10}{4}$
16) $\frac{3}{10} \cdot \frac{5}{6}$
17) $\frac{10}{12} \cdot \frac{9}{4}$
18) $\frac{20}{7} \cdot \frac{14}{5}$

0.12: Practice - Mean, Median, Mode, \& Range

Name: \qquad
Period: \qquad

Practice

Find the mean, median, mode, and range of the following data sets. Round to the nearest whole number.
4) $\{40,25,35,20,80,20\}$
a) Mean:
c. Mode:
b) Median:
d. Range:
5) $\{48,42,44,47,47,42,40\}$
a) Mean:
c. Mode:
b) Median:
d. Range:
6) $\{103,101105,107\}$
a) Mean:
c. Mode:
b) Median:
d. Range:
7) $\{9,5,7,1,5,6,5,6\}$
a) Mean:
c. Mode:
b) Median:
d. Range:

0.13: Practice - Properties of Exponents

Name: \qquad
Period: \qquad

Practice

Simplify using the Power rule. $\left(x^{m}\right)^{n}=x^{m n}$
14) $\left(4^{6}\right)^{3}$
15) $\left(w^{5}\right)^{7}$
16) $\left(2 x^{3}\right)^{8}$

Simplify using the Zero Exponent rule. $x^{0}=1$
17) 132^{0} \qquad
18) $463(x)^{0}$ \qquad
19) $2(5 x y)^{0}$ \qquad

Simplify using the Negative Exponent rule. $x^{-m}=\frac{1}{x^{m}}$
20) 7^{-3} \qquad
21) $-(43)^{-4}$ \qquad
22) $\left(\frac{2}{3}\right)^{-7}$

Appendix A: Study Guide

"By failing to prepare, you are preparing to fail." Benjamin Franklin
Teachers are always telling you, "be sure to study," but what does this really mean? If you don't understand how to study you will not be effective at actually studying. Below are several topics that should help you better prepare yourself for success.

What does studying mean? It means giving time and attention to what you learned in class in order to gain knowledge. It isn't something you have to do, it is something you should want to do in order to be successful in school.

Study Habits

Studying is specific and focused. The following tips should be considered:

1. Studying must be planned and deliberate. Set aside specific times each day in a place that is free of distractions. Saying that you'll study when you have time equates to never having time.
2. Daily review. Set aside a specific time each school day and take a few minutes to review your notes and the day's lesson. Identify what you didn't understand so that you can ask questions during the next class or tutoring session.
3. Short daily sessions of 20 to 30 focused minutes. This can be more effective than 1 or 2 hours all at once.
4. Find a place where you can focus best. It may be a quiet room or it could be a noisy Starbucks. Find what works best for you.
5. Eliminate distractions. Multitasking has been shown to be ineffective when it comes to studying. Put away your phone and other electronics.
6. Music may help you or hinder your concentration. Studies show that the majority of people do not study well when lyrics are sung. Your brain only focuses on one thing at a time. So ask yourself, "is this really helping me."
7. Actively study by saying the material out loud.
8. Become a teacher. A great way to learn is to teach. Explain to another student, or even your cat, the steps needed to complete a problem. This has the added benefit of identifying areas of struggle in order to ask specific questions for clarification.
\qquad
\qquad

Study Strategies

Effective Strategies

- Work through practice problems and verify your answers are correct.
- Work and rework through pre-assessments until you can complete them without help.
- Quiz yourself using your notes. Flashcards are helpful for key terms and concepts. Only 10% of your study time should be devoted to flashcards.
- Rewrite the directions in your own words to reinforce and ensure understanding. Highlighting action words is also helpful.
- Watch online tutorials, pause and work along with the tutorial. Practice related problems to deepen understanding.
- Write a reflection after each study session. Be specific and target your learning objectives. Use academic language (key terms).
- Form a study group to work with regularly. Learning with and from others deepens understanding through varied perspectives.

Ineffective Strategies

- Work completed during class time is new learning, not "studying."
- Practice assignments provide opportunities to learn what you were taught during class. Studying is "focused attention with a goal of understanding \& retention" that requires more work than just the assignments provided can offer.
- Taking notes is not enough. Notes can help you study, but you must review notes while practicing to deepen understanding \& make connections.
- Reading or rereading notes is different from studying notes for understanding.
- "Going over what we learned in class" is not enough. Study uses a specific method of focus.
- Writing reflections that are overly general serve no purpose.
- "Cramming" the day before a test does not help you retain information or make deep connections to other math concepts.

> "It's not that I'm so smart, it's just that I stay with problems longer."
-Albert Einstein

Note Taking

There are many forms of "Note Taking;" however, in this class, we use Cornell Notes. It is proven highly effective in making connections and enforcing conceptual understanding. Many college professors also require notes in this format. See the format \& example below.

$21 / 2^{\prime \prime}$	
Cue-Column	$<\longrightarrow$

1. Record: During the lecture, use the note-taking column to record the lecture using telegraphic sentences.
2. Questions: As soon after class as possible, formulate questions based on the notes in the right-hand column. Writing questions helps to clarify meanings, reveal relationships, establish continuity, and strengthen memory. Also, the writing of questions sets up a perfect stage for exam-studying later.
3. Recite: Cover the note-taking column with a sheet of paper. Then, looking at the questions or cue-words in the question and cue column only, say aloud, in your own words, the answers to the questions, facts, or ideas indicated by the cue-words.
4. Reflect: Reflect on the material by asking yourself questions, for example: "What's the significance of these facts? What principle are they based on? How can I apply them? How do they fit in with what I already know? What's beyond them?
5. Review: Spend at least ten minutes every week reviewing all your previous notes. If you do, you'll retain a great deal for current use, as well as, for the exam.

*Taken from The Learning Strategies Center at Cornell University

Youtube link for Study Skills - Note Taking
https://www.youtube.com/watch?v=E7CwqNHn Ns\&disable polymer=true
Cornel notes explained
http://Isc.cornell.edu/study-skills/cornell-note-taking-system/

Name: \qquad
Period: \qquad

Improving Your Memory

Memory isn't just something you have, it is something you can improve. Below is a list of strategies to use to help you remember. Use as many strategies as possible to improve your memory!

1. Space your study sessions out throughout the week. Studying a little bit every day increases your retention and recall.
2. Organize and structure your material. Put similar items together, create outlines or color code using highlighters.
3. Use mnemonic devices such as PEMDAS. An example with domain and range is: alphabetically, domain (d) comes before range (r) and x comes before y. The domain is represented by x and the range by y. Alphabetically they correspond.

Mnemonics: Mental devices that help you associate pieces of information in ways that are easier to remember
4. Avoid cramming, or last minute studying. Material "crammed" into your brain at last minute gets stored in short term memory and will be easily forgotten. You must study over many days to shift the short term memory to long term.
5. Relate New Information to Things You Already Know.
6. Focus all your attention on what you are studying. Turn off your electronics, study in a room without distractions from siblings or others, etc.
7. Visualize concepts by drawing graphs or pictures, or imagining a humorous diagram. Even flashcards can be beneficial for this.
8. Teaching the material to someone or something else helps with better recall. At the very least read out loud.

9. Rehearse and elaborate by, for example, reading the definition of a key term, studying that definition, and then reading a more detailed description of the term. After repeating this a few times try writing the definition down in your own words. You will be amazed at what you recall.

Youtube link for Study Skills: Memory
https://www.youtube.com/watch?v=SZbdK9e9bxs\&list=PL8dPuuaLiXtNcAJRf3bE1IJU6nMfHi86W\&t=0s
All material paraphrased from Study Skills Crash Course, by Thomas Frank.

Studying for Assessments

"By failing to prepare, you are preparing to fail." ~ Benjamin Franklin
To really be successful in high school it is important to study. Showing up for class and doing your homework are not usually enough to do well on exams. Learning takes time and does not happen overnight. If you plan to do well on assessments, good study habits are important. The following tips will help:

1. Build a study schedule (how often?, where?, which days?, with whom?, etc.).
2. Create specific study sessions (with goals to master specific concepts).
3. Start studying at least 2 weeks prior to the assessment.
4. Replicate the test conditions as much as possible, and take practice tests when available. Try not to look up information if possible.
5. When ready, quiz yourself by using recall (do not look up information this time).
6. Use the study guide (pre-assessment), notes, and practice assignments.
7. Create flashcards for facts and vocabulary (a maximum of 10% of your study time should be focused here).
8. Allow yourself time off: take breaks, eat healthy, and get adequate sleep.

If you encounter problems you don't understand, avoid saying, "I don't get this," as this causes your brain to shut down. Instead, write down the specific part of the problem that is causing confusion. Take a short break, then spend 10-15 minutes trying to rework the problem on your own, using notes \& examples. Work the problems line by line through until you know precisely where you are stuck. Write down all the solutions you have come up with so far. This will provide context to others who may be able to help you.

Youtube link for Study Skills - Exams:
https://www.youtube.com/watch?v=mLhwdITTrfE\&list=PL8dPuuaLjXtNcAJRf3bE1IJU6nMfHj86 W\&index=8

All material paraphrased from Study Skills Crash Course, by Thomas Frank.

Name: \qquad
Period: \qquad

Test Anxiety

Anxiety is often an indication that what you are doing is important. It is common to become anxious while taking a test. There are some things that you can do to reduce test anxiety. According to Thomas Frank from Study Skills Crash Course, there are three main causes of test anxiety.

1) The fear of repeating past failures

- Remember that you are not defined by your past fears or failures.
- Identify what you were doing incorrectly in the past so that you can improve.
- Review past exams until you understand your errors.
- Ask for feedback and rework problems correctly before reassessing.
- Every failure is an opportunity to learn, but only when followed by a plan of how you will avoid the same mistakes in the future.

2) The fear of the unknown

- Be prepared. Study as much of the material as you can, and don't wait until the day before an assessment to begin studying.
- When studying, attempt mastery of the problems so that, when taking the test, you are more likely to remember the material. Adequately studying for a test removes most test anxiety.
- Replicate test conditions as much as possible when you study.
- Use the study guides (pre-assessments) and worksheets to practice problems solving. Ask for extra help outside of class to begin understanding any material you are challenged by.
- If possible, study in a classroom that is similar to where you will be tested.

3) The fear of the stakes

- Know that you can recover from a single test. You will have an opportunity to reassess and demonstrate your understanding (which can lead to a grade increase).
- Reassess soon after any failed test. It is important to get feedback and prepare while the material is still fresh, and before learning more complex concepts.
- Know that "Failure is a great teacher, and often a better one than success."

The Mayo Clinic released this quick reference guide to reduce test anxiety:

1. Learn how to study efficiently
2. Study early and in similar places
3. Establish a consistent pretest routine
4. Talk to your teacher
5. Learn relaxation techniques
6. Don't forget to eat and drink
7. Get some exercise
8. Get plenty of sleep

If these steps don't improve your test anxiety be sure to ask for further help. You do not need to face this alone.

Youtube link for Study Skills - Test Anxiety
https://www.youtube.com/watch?v=t-9cqaRJMP4\&list=PL8dPuuaLiXtNcAJRf3bE1IJU6nMfHj86W\&index=9
All material paraphrased from Study Skills Crash Course, by Thomas Frank.
\qquad
Period: \qquad

Appendix B: Math Puzzle Challenges

1.	2.
www.solvemoji.com - EASY SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE	www.solvemoji.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE
$\begin{aligned} \text { Pencil: } & P+P+P=18 \\ & 3 P=18 \\ & (3 P) / 3=18 / 3 \\ & P=6 \end{aligned}$	Paperclip:
$\begin{gathered} \text { Ruler: } \mathrm{R}+\mathrm{R}+6=20 \\ 2 \mathrm{R}+6=20 \\ -6 \quad-6 \\ 2 R=14 \\ (2 R) / 2=14 / 2 \\ R=7 \end{gathered}$	Calligraphy Pen:
$\begin{aligned} \text { Thumbtack: } & 7+\mathrm{T}+\mathrm{T}=17 \\ & 7+2 \mathrm{~T}=17 \\ & -7 \quad-7 \\ & 2 \mathrm{~T}=10 \\ & (2 \mathrm{~T}) / 2=10 / 2 \\ & \mathrm{~T}=5 \end{aligned}$	Scissors:
$\begin{aligned} \text { Total: } & 2(5) \cdot 7+2(6) \\ & 10 \cdot 7+12 \text { => } 70+12 \text { => } 82 \end{aligned}$	Total:

Name: \qquad
Period: \qquad

5.	6.
www.solvemoji.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE	www.solvemoji.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE
	Puzzle ID: 29335 Solvem=ji.com (63) codemon
Boar:	Fox:
Gorilla:	Raccoon:
Lion:	Monster:
Total:	Total:

7.	8.
www.solvemoj.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE	Www.solvemoji.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE
Basketball:	Saxophone:
Dice:	Violin:
Volleyball:	Music Notes:
Total:	Total:

Name: \qquad
Period: \qquad

9.	10.
www.solvemoji.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE	www.solvemoji.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE
Genie:	Music Notes:
Wizard:	Keys:
Merperson:	Horns:
Total:	Total:

11.

Whw.solvemoji.com - MEDIUM
solutons, puzzes \&

Name: \qquad
Period: \qquad

13.	14.
Www.solvemoji.com - MEDIUM SOLUTIONS, PUZZIES \& LEADERBOARDS ONLINE	www.solvemoji.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE
Puzzle ID: 17579 Solvem シji.com ڤeqition	
Vampire:	Ant:
Ghost:	Snail:
Tree:	Bee:
Total:	Total:

15.	16.
www．solvemoji．com－MEDIUM SOLUTIONS，PUZZLES \＆LEADERBOARDS ONLINE	www．solvemoji．com－MEDIUM SOLUTIONS，PUZZLES \＆LEADERBOARDS ONLINE
	Puzzle ID： 28418 Solvem：ji．com
Owl：	Mouse：
Cow：	Duck：
Fox：	Reindeer：
Total：	Total：

Name: \qquad
Period: \qquad

17.	18.
www.solvemoji.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE	www.solvemoji.com - MEDIUM SOLUTIONS, PUZZLES \& LEADERBOARDS ONLINE
	$\begin{aligned} & +0+2=54 \\ & +0 x+0=218 \\ & x+0=? \end{aligned}$
Wolf:	Donut:
Bear:	Cake:
Gorilla:	Lollipop:
Total:	Total:

Name: \qquad
Period: \qquad

Appendix C: Interactive Glossary

Definition	Student Example or Drawing
Associate To Associate is to group.	
Associative Property of Addition The Associative Property of Addition is to rearrange three or more addition terms (addends). The sum is the same regardless of how the terms are grouped.	
$\qquad a+(b+c)=a+(b+c)$	
Associative Property of Multiplication The Associative Property of Multiplication is to rearrange three or more terms that are multiplied, the product is the same regardless of how the terms are grouped.	
\qquad(b) $)=(a b) c$	
Base The Base (of a Power) is the number or variable being multiplied.	
Coefficient The Coefficient is a number multiplied by a variable.	
When two or more fractions have the same denominator they are said to have a Common Denominator.	

Commute To Commute is to move around or travel.	
Commutative Property of Addition The Commutative Property of Addition is to change the order of the terms being added. It does not change the sum. $a+b=b+a$	
Commutative Property of Multiplication The Commutative Property of Multiplicationis to change the order of the terms being multiplied. It does not change the product. $a b=b a$	
Constant A Constant is a symbol that has a fixed numerical value. For example: $2,6,0,-5,-9,3 / 8,4 / 9$ are all constants In the expression $3 x+5$, the constant is 5 .	
Coordinate Plane A Coordinate Plane a two-dimensional plane formed by the perpendicular intersection of an x - and a y-axis. Usually represented on a grid.	
Denominator The Denominator is the divisor. It is the bottom number of a fraction and represents the number of equal parts needed to make a whole.	

Name: \qquad
Period: \qquad

Distribution			
Distribution is multiplying a sum by its factor, by			
multiplying each term (addend) separately within the			
sum by its factor.		部	Distributive Property
:---			
Distributive Property is multiplying a number by a sum			
is equivalent to multiplying each term in the sum			
separately.			

Factoring Factoring is the act of writing a number or expression as a product of two or more factors.	
Fraction A Fraction is a number of equal parts of a whole. It represents division.	
Graph A Graph is a diagram showing the relationship between variable quantities.	
Greatest Common Factor (GCF) The Greatest Common Factor is the largest number or expression that can be evenly divided out of two or more terms.	
Inequality An Inequality is a mathematical sentence that compares one expression to another. It has a symbol that shows less than ($<, \leq$) or greater than ($>, \geq$). The bar means "or equal to."	
Inverse Operations Inverse Operations reverse the effect of the original operation. They are operations that undo each other.	
Isolate To Isolate a variable is to rearrange an algebraic equation so that a specific variable is alone on one side of an equation.	

Name: \qquad
\qquad

| Least Common Denominator |
| :--- | :--- |
| When two or more fractions have the least common |
| multiple of all the denominators it is called the Least |
| Common Denominator. | 保 | Like Terms |
| :--- |
| Like Terms have the same variable(s) and same |
| exponent. |

Operators Operators are represented by symbols. Some operators have more than one symbol.	
Ordered Pair An Ordered Pair the coordinate of a point, (x,y), on a coordinate plane.	
Origin The Origin the point of intersection of the x - and y-axes, located at (0,0).	
PEMDAS PEMDAS is an acronym to help remember the order of operations used to SIMPLIFY expressions. It stands for Parenthesis (or grouping), Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right).	
Power	
A Power is a base with an exponent.	
Prime Factorization Prime Factorization is factoring a number until all factors are prime numbers. Quadrants are the four sections on a coordinate plane created by the intersection of the x - and y-axes. The x and y values change signs depending on the quadrant the coordinate is in.	

Name: \qquad
\qquad

Range of a Data Set The Range of a Data Set is the difference between the largest value and smallest value contained in the data set.	
Reduce To Reduce is to rewrite a fraction in its simplest form.	
SADMEP SADMEP is an acronym to help remember the order of operations to SOLVE equations. It is PEMDAS backwards, so you will work in reverse order.	
Simplify To Simplify is to rewrite an expression in its simplest form.	
Solve	
To Solve is to find the value of a variable that makes an equation true.	
Solving A Variable a symbol or letter that represents a quantity that varies in an expression or equation. It has no fixed value. equation. Terms are separated by a plus or a minus sign. Terms are single numbers, variables, or the product of a number and variable.	
Variable the value of the unknown in an	

\boldsymbol{X}-axis	
The \boldsymbol{x}-axis is the horizontal reference line.	
\boldsymbol{Y}-axis	
The \boldsymbol{y}-axis is the vertical reference line.	

\qquad
Period: \qquad

Appendix D: Justifications

Justification	Hints	Example	Notes
Associative (grouping)	You associate with different groups.	$\begin{aligned} & 3+(12+5) \\ & =(3+12)+5 \\ & 2(3 \cdot 4) \\ & =(2 \cdot 3) \cdot 4 \end{aligned}$	Works with addition and multiplication not subtraction or division.
Commutative (ordering)	Since commutative has an " 0 " in it, think order.	$\begin{aligned} & 2+3=3+2 \\ & 4 \cdot 5=5 \cdot 4 \end{aligned}$	Works with addition and multiplication not subtraction or division.
Distributive (through parentheses)	Think of distributing something to each your friends.	$\begin{aligned} & 3(4+7)= \\ & 3(4)+3(7) \\ & -2(5-6)= \\ & -2(5)-(-2)(6) \end{aligned}$	When negatives are on the outside of the parenthesis, make sure you distribute the negative to the second number too.
Identity (staying the same)	You always come back to your identity.	$\begin{aligned} & 9+0=9 \\ & 9 \cdot 1=9 \end{aligned}$	Additive identity is 0 . Multiplicative identity is 1 .
Inverse (undoing)	When you put your car in "inverse" you go backwards.	$\begin{aligned} & 9+(-9)=0 \\ & 9 \cdot \frac{1}{9}=1 \end{aligned}$	Additive inverse is - 1 , since $-\mathrm{a}+\mathrm{a}=0$. Multiplicative inverse is $\frac{1}{a}$, since $\frac{1}{a} \cdot \frac{a}{1}=1$. The inverse of $\frac{a}{b}$ is $\frac{b}{a}$ because $\frac{a}{b} \cdot \frac{b}{a}=1$.
Property of Equality / Inequality $(=,<.>)$	What you do (operation) to one side of the equal / inequality sign you must do to the other.	$\begin{aligned} & 3+b=7 \\ & 3+b-3=7-3 \\ & b=4 \\ & 4+2 b=10 \\ & \frac{4}{2}+\frac{2 b}{2}=\frac{10}{2} \\ & 2+b=5 \end{aligned}$	Works for all operations. When multiplying or dividing you must perform the operation on ALL terms.

Reduce / Simplify \boldsymbol{a} Fraction	Rewrite the numerator and denominator in their smallest equivalent numbers.	$\frac{2}{6}=\frac{2}{2 \cdot 3}=\frac{1}{3}$	Factor the numerator and denominator to find common factors to remove.
Zero Product Property	If the product of two or more terms equals zero then at least one of the factors must be zero.	$a b=0$ then $a=0$ or $b=0$ $(2 x+3)(x-4)=0$ Then $2 x+3=0$ or $x-4=0$	This is true even if a or b is an expression.

Name： \qquad

$\stackrel{\circ}{-1}$	8	\％	8	8	\％	8	¢	\％	8	\％	8	－	\％	d	O8	呬	8	8	8	8	8	8	\％	－
\＆	8	$\stackrel{\square}{-1}$	잉	\％	－8	운	\％	ㅅ	－	8	\％	－	$\stackrel{\circ}{\square}$	－	－	$\underset{\sim}{\mathrm{\infty}}$	$\underset{\sim}{\mathrm{O}}$	若	$\begin{array}{\|l\|} \hline 8 \\ \hline 8 \end{array}$	O	$\begin{array}{\|l\|} \hline 8 \\ \hline 0 \end{array}$	O	$\begin{array}{\|c\|} \hline \mathbf{\infty} \\ \hline \end{array}$	\％
\＆	\＆	$\stackrel{\square}{1}$	I	－	\％	－	융	\％	ㅅ	\％	\％	\％	O	$\begin{aligned} & \underset{\sim}{7} \\ & \hline \end{aligned}$	$\underset{\sim}{\circ}$	O-0	©	$\begin{array}{\|l\|} \hline \hline \mathbf{N} \\ \hline \end{array}$	8	$\begin{array}{\|l\|} \hline \stackrel{\otimes}{8} \\ \hline \end{array}$	\|oio		$\underset{\sim}{\circ}$	\％
\bigcirc	R	g	일	\％	\％	¢	\％	\％	\％	¢	R	\％	\％	\％	$\begin{array}{\|l\|} \hline \text { Oid } \\ \hline \end{array}$	O	$\underset{\sim}{\circ}$	$\begin{array}{\|l\|} \hline \hline ⿴ 囗 ⿰ 丿 ㇄ \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ \hline 0 \end{array}$	$$	$\begin{array}{\|l\|} \hline \text { O} \\ \hline \end{array}$	俞	$\begin{aligned} & \hline \stackrel{y}{0} \\ & \hline \end{aligned}$	\％
\bigcirc	\％	국	－	구N	\％	－	\％	¢	9	8	\％	ํ	$\stackrel{\text { ® }}{\sim}$	¢	8	$\underset{\sim}{\circ}$	$\underset{\sim}{\mathrm{O}}$	$\begin{array}{\|c\|} \hline \text { O } \\ \hline \end{array}$	O	O	$\begin{array}{\|c} \text { צ } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathbf{Q} \\ \hline \end{array}$	$\begin{aligned} & \hline 8 \\ & \hline \end{aligned}$	8
앙	옹	8	육	8	ㅇNㅅ	\％	융	8	\％	\％	\％	8	앙	\％	只	8	O8	O	O	O	$\begin{array}{\|l\|} \hline 8 \\ \hline 0 \end{array}$	O	$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline \end{aligned}$	8
\％	\％	¢	극	$\stackrel{\square}{-1}$	\％	尔	\％	－	－	\％	\％	\％	กั	\％	8	8	Oi	$\begin{array}{\|c} \hline 8 \\ \hline 1 \end{array}$	\|o	O	$\underset{\sim}{\circ}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\sim} \\ \hline \end{array}$	\%op	\％
¢	¢	\％	8	$\stackrel{\sim}{\sim}$	윽	－	을	¢	ㅇ	8	\％	\％	\％	¢	\％	8	8	$\underset{\sim}{\circ}$	$\begin{array}{\|l\|} \hline \text { OR } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \underset{\sim}{\otimes} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{O}{N} \\ \hline \end{array}$	\|O	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	\％
$\stackrel{\sim}{\sim}$	\％	9	8	∞	－	욱	夺	$\stackrel{\square}{\square}$	$\stackrel{\square}{-1}$	\％	ํ	¢	$\stackrel{\circ}{\sim}$	\％	8	\％	8	8	O	O무	O	O-9	$\stackrel{\otimes}{\mathbf{O}}$	－
$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	\％	\％	8	凩	\％	음	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	욱	$\stackrel{\text { ® }}{\square}$	$\stackrel{\text { O }}{\sim}$	合	을	$\stackrel{\sim}{\sim}$	8	号	8	只	8	皆	－	哥	\％
\pm	\pm	$\stackrel{\sim}{\sim}$	\％	눈	\bigcirc	¢	\％	～	$\stackrel{\sim}{\sim}$	\％	势	$\stackrel{\infty}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\square}$	ㄹ	$\stackrel{\sim}{\sim}$	\％	\％	\％	\％	\％	$\stackrel{\sim}{7}$	$\stackrel{\circ}{\sim}$	8
	$\stackrel{m}{\square}$	～	\％	กั	\＆	$\stackrel{\infty}{ }$	Ј	¢	今	$\stackrel{0}{7}$	\％	ำ	－	$\underset{\sim}{\sim}$	๙	$\stackrel{\sim}{\sim}$	\％	กั่	앙	$\stackrel{\text { ¢ }}{\sim}$	앙	O	$\stackrel{9}{7}$	－
\cong	\sim	N	m	\％	8	N	¢	ஃ	－	$\stackrel{\sim}{\sim}$	\％	年	$\stackrel{\circ}{\circ}$	$\stackrel{\text {－}}{\sim}$	$\stackrel{\square}{-1}$	워N	－	－	8	ㅅ	¢	\％	－	－
\exists	7	N	m	\％	品	ஃ	N	m	\％	0	N	～	尔	哭	$\stackrel{\square}{0}$	ํㅜㄹ	－	㠻	앵	－	ㅇ	®	\％	8
\bigcirc	악	～	\％	\％	용	8	ㅇ	\％	2	8	악	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	악	윽	－	－	\％	\％	8	$\stackrel{8}{\circ}$	\％	\％	－
a	a	$\stackrel{\sim}{\sim}$	へ	\％	\％	岕	$\%$	N	¢	\％	\％	$\stackrel{\square}{\square}$	$\stackrel{\text { A }}{ }$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{-1}$	웃	－	号	\％	\％	숫	－	8
∞	∞	$\stackrel{1}{-1}$	－	N	\％	¢	요	¢	N	\＆	¢	ฉ	－	N	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{-1}$	문	2	\％	¢	\％	O	N	8
\wedge	\wedge	\pm	त	$\stackrel{\sim}{\sim}$	¢	～	\％	난	\％	P	N	ぁ	こ	ू	$\stackrel{\square}{\square}$	\％	을	$\stackrel{\sim}{\sim}$	\％	$\stackrel{\%}{\sim}$	\％	i	\％	\bigcirc
\bigcirc	\bigcirc	$\underset{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	N	¢	¢	\％	$\stackrel{\infty}{+}$	岕	\％	$\stackrel{8}{\circ}$	N	$\stackrel{\sim}{\sim}$	あ	\％	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{-}$	울	\％	$\stackrel{\circ}{\circ}$	\％	\％	¢	\％
\llcorner	n	\bigcirc	$\stackrel{\Omega}{\sim}$	$\stackrel{1}{\sim}$	슨	\％	毎	\％	！	응	员	\％	\％	\bigcirc	凩	\％	$\stackrel{\sim}{\square}$	－	웃	\％	怱	8	令	\％
＊	＋	∞	\sim	$\stackrel{\square}{-}$	$\stackrel{\square}{\sim}$	～	$\stackrel{\sim}{\sim}$	\％	$\stackrel{\circ}{\circ}$	\％	ま	${ }^{\infty}$	ก	웅	\％	\＆	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{-1}$	8	I	$\stackrel{\sim}{\sim}$	－	－	8
m	m	\bigcirc	a	\sim	익	$\stackrel{\infty}{\sim}$	त	N	N	¢	¢	$\stackrel{\square}{\circ}$	\％	\％	¢	8	8	$\stackrel{\sim}{1}$	O－1	－	을	I	ค	\％
～	～	＋	\bigcirc	∞	악	～	\pm	\bigcirc	$\stackrel{\infty}{\sim}$	～	N	～	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	8	\％	8	∞	\％	$\stackrel{\sim}{\sim}$	g	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{\square}$	－
－	\cdots	～	m	＋	n	\bigcirc	N	∞	a	악	\square	\sim	$\stackrel{m}{\sim}$	\pm	$\stackrel{n}{\square}$	$\stackrel{1}{\sim}$	\％	\％	\％	8	\bigcirc	\＆	8	\％
\times	－	～	m	＋	\bullet	\bigcirc	\wedge	∞	の	\bigcirc	\exists	\cong	\pm	\pm	$\stackrel{\square}{\square}$	～	¢	\％	앙	\bigcirc	\bigcirc	\bigcirc	\＆	8

