

Questions / Big Ideas	<u>Radical</u> ≡ root symbol			
	• \sqrt{x} has an invisible index of 2 and an invisible exponent of 1.			
	\circ This is read, "the square root of x."			
	 This can be written as a rational exponent: 			
	$\sqrt{x} = \sqrt[2]{x^1} = x^{\frac{1}{2}}$			
	• $\sqrt[3]{x}$ has an invisible exponent of 1. • This is read, "the cube root of x."			
	• This can be written as a rational exponent: $\sqrt[3]{x} = x^{rac{1}{3}}$			
	<u>Radicals w/ nth Roots (n: index)</u> \equiv If n is positive, then b is the n th root of a. • Written: $b = \sqrt[n]{a}$			
	$\underline{Roots} \equiv$ The root of a number x is another number, which when multiplied by itself a given number of times, equals x			
	• $b = \sqrt[3]{a}$ means that b, multiplied by itself 3 times, equals a.			
	 This can be written as b ⋅ b ⋅ b = a and simplified to b³ = a. ³√a = b is read, "b is the cube root of a," or can be read, "the cube root of a is b." 			
	 To Calculate the nth Root 1. Type the number for n (ex. 3) 			
	2. Press 2nd			
	 3. Press ^ 4. Type a (ex. 125) 			
	5. Enter			
	o Example (calculated above)			
	5 is the cube root of 125, which is written as $\sqrt[3]{125} = 5$;			
	so, 5 ³ = 125.			

Questions / Big Ideas	The Rational (fractional) Exponent				
	• 1 st Focus: Denominator (the nth root)				
	\circ The number of identical factors to expand the original base into.				
	\circ This creates the new base (the factors used in expanded form).				
	• 2 nd Focus: Numerator (exponent)				
	• The exponent that one of the repeated factors is raised to,				
	creating a simplified value.				
	Original Rational Exponent	Expanded Form (base is factored by taking the nth root)	Simplified Value	Explanation of Simplified Value	
	$16^{\frac{3}{4}}$	Since the 4 th root of 16 equals 2, there are 4 repeated factors of 2: $(2 \cdot 2 \cdot 2 \cdot 2)^{\frac{3}{4}}$	2 ³ = <u>8</u>	The simplified value (8) is product of 3 of the 4 repeated factors of the product 16.	
	$16^{\frac{3}{2}}$	Since the square root of 16 equals 4, there are two repeated factors of 4: $(4 \cdot 4)^{\frac{3}{2}}$	$4^3 = 64$	The simplified value (64) is product of 3 of the 2 repeated factors of the product 16.	
	Equivalent Expressions = expressions with equal values • Example: $125^{\frac{4}{3}} = (5 \cdot 5 \cdot 5)^{\frac{4}{3}} = (5^3)^{\frac{4}{3}} = 5^{\frac{12}{3}} = 5^4 = 625$ Guided Practice				
	Original = Expanded = Simplified				
	$243^{\frac{2}{5}} = ($ $)^{\frac{2}{5}} = $				
	Explanation:				

Rational Exponent Rule =
$$x^{\frac{a}{b}} = \sqrt[b]{x^{a}} = (\sqrt[b]{x})^{a}$$
• Rule Applied: $16^{\frac{3}{a}} = \sqrt[4]{16^{3}} = (\sqrt[4]{16})^{3}$ • Example: Write equivalent expressions for $16^{\frac{3}{4}}$ = $(\sqrt[4]{16})^{3}$ or $\sqrt[4]{16^{3}}$ = $(\sqrt[4]{2})^{3}$ or $\sqrt[4]{(2 \cdot 2 \cdot 2 \cdot 2)^{3}}$ = $(\sqrt[4]{2})^{3}$ or $\sqrt[4]{(2 \cdot 3)^{3}}$ = $(\sqrt[4]{2})^{3}$ or $\sqrt[4]{(2 \cdot 3)^{3}}$ = $(2^{\frac{4}{4}})^{3} = (2^{1})^{3}$ or $\sqrt[4]{(2 \cdot 3)^{3}}$ = $(2^{\frac{4}{4}})^{3} = (2^{1})^{3}$ or $\sqrt[4]{2^{12}} = \sqrt[4]{4096}$ = $2^{3} = 8$ or $2^{\frac{12}{4}} = 2^{3} = 8$ • Questions to Ask Yourself1. Can I factor the base into identical integer factors?2. Are there more than one set of identical integer reponent)?4. Which exponent rules can I apply to this expression?Guided PracticeShow that both radicals are equivalent using the order of operations. $(\sqrt[3]{125})^{2} = \sqrt[3]{125^{2}}$